Abstract

We propose a new algorithm for dynamic data-race detection. Our algorithm reports no false positives and runs on arbitrary C and C++ code. Unlike previous algorithms, we do not have to instrument every memory access or track a full happens-before relation. Our data-race detector, which we call IFRit, is based on a run-time abstraction called an interference-free region (IFR). An IFR is an interval of one thread's execution during which any write to a specific variable by a different thread is a data race. We insert instrumentation at compile time to monitor active IFRs at run-time. If the runtime observes overlapping IFRs for conflicting accesses to the same variable in two different threads, it reports a race. The static analysis aggregates information for multiple accesses to the same variable, avoiding the expense of having to instrument every memory access in the program. We directly compare IFRit to FastTrack and ThreadSanitizer, two state-of-the-art fully-precise data-race detectors. We show that IFRit imposes a fraction of the overhead of these detectors. We show that for the PARSEC benchmarks, and several real-world applications, IFRit finds many of the races detected by a fully-precise detector. We also demonstrate that sampling can further reduce IFRit's performance overhead without completely forfeiting precision.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.