Abstract

Co-simulation is a widely used solution to enable global simulation of a modular system via the composition of black-boxed simulators. Among co-simulation methods, the IFOSMONDI implicit iterative algorithm, previously introduced by the authors, enables us to solve the non-linear coupling function while keeping the smoothness of interfaces without introducing a delay. Moreover, it automatically adapts the size of the steps between data exchanges among the subsystems according to the difficulty of solving the coupling constraint. The latter was solved by a fixed-point algorithm, whereas this paper introduces the Jacobian-Free Methods version. Most implementations of Newton-like methods require a jacobian matrix which, except in the Zero-Order-Hold case, can be difficult to compute in the co-simulation context. As IFOSMONDI coupling algorithm uses Hermite interpolation for smoothness enhancement, we propose hereafter a new formulation of the non-linear coupling function including both the values and the time-derivatives of the coupling variables. This formulation is well designed for solving the coupling through jacobian-free Newton-type methods. Consequently, successive function evaluations consist in multiple simulations of the systems on a co-simulation time-step using rollback. The orchestrator-workers structure of the algorithm enables us to combine the PETSc framework on the orchestrator side for the non-linear Newton-type solvers with the parallel integrations of the systems on the workers’ side thanks to MPI processes. Different non-linear methods will be compared to one another and to the original fixed-point implementation on a newly proposed 2-system academic test case with direct feedthrough on both sides. An industrial model will also be considered to investigate the performance of the method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call