Abstract

Toll-like receptors (TLRs) mediate innate immune responses to microbes. TLR2, TLR5, TLR6, and TLR9 have been implicated in responses to bacterial components, and TLR4 is the receptor for Gram-negative bacteria. Recently, TLR4 was described to function in respiratory syncytial virus-induced NF-kappaB activation. Here we have analyzed TLR1-9 mRNA expression in human primary macrophages infected with influenza A and Sendai viruses. TLR1, TLR2, TLR4, TLR6, and TLR8 mRNAs were expressed at basal levels in macrophages. Viral infection enhanced TLR1, TLR2, TLR3, and TLR7 mRNA expression, and neutralizing anti-IFN-alpha/beta antibodies downregulated gene expression of these TLRs. Exogenously added IFN-alpha upregulated TLR1, TLR2, TLR3, and TLR7 mRNA expression in macrophages, as well as TLR3 mRNA expression in epithelial and endothelial cell lines. IFN-gamma enhanced the expression of TLR1 and TLR2 mRNA in macrophages, and TLR3 in epithelial and endothelial cells. The data suggests a novel role for IFNs in the activation of innate immunity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call