Abstract

We reported a natural antisense (AS) long non-coding RNA as an important modulator of interferon-Alpha1 (IFNA1) mRNA levels. We showed that IFN-Alpha1 AS promotes IFNA1 mRNA stability by transient duplex formation and inhibition of miR-1270-induced mRNA decay. Here, we performed a proof-of-concept experiment to verify that the AS-mRNA regulatory axis exerts in vivo control of innate immunity. We established a model system for influenza virus infection using guinea pig, which encodes a functional MX1 gene for the type I IFN pathway. This system allowed us to investigate the effects of antisense oligoribonucleotides representing functional domains of guinea pig IFN-Alpha1 AS on gpIFNA1 mRNA levels and, consequently, on viral proliferation in the respiratory tract of influenza virus-infected animals. We demonstrated that pulmonary-administered asORNs inhibited the proliferation of the virus in the animals by modulating IFNA1 mRNA levels. These results indicate that, in light of the proposed actions, asORNs may modulate the level of IFNA1 mRNA in vivo, indicating that IFN-Alpha1 AS plays a pivotal role in determining the outcome of type I IFN responses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.