Abstract

Dysfunctional neurons and microglia in the rostral ventrolateral medulla (RVLM) have been implicated in the pathogenesis of stress-induced hypertension (SIH). Functional perturbation of microglial synaptic engulfment can induce aberrant brain circuit activity. IFN-γ is a pleiotropic cytokine that plays a role in regulating neuronal activity. However, existing research on the exploration of the effects of microglia on synapses in the RVLM is lacking, particularly on the function of IFN-γ in microglial synaptic engulfment involved in SIH. A SIH rat model was established by electric foot shocks combined with noise stimulation. The underlying mechanism of IFN-γ on synaptic density and microglial synaptic engulfment was investigated through in-vivo and in-vitro experiments involving gain of function, immunofluorescence, quantitative real-time PCR, western blot, and morphometric analysis. Furthermore, the function of IFN-γ in neuronal activity, renal sympathetic nerve activity (RSNA), and blood pressure (BP) regulation was determined through in-vivo and in-vitro experiments involving Ca2+ imaging, immunofluorescence, platinum-iridium electrode recording, ELISA, the femoral artery cannulation test, and the tail-cuff method. The BP, heart rate, RSNA, plasma norepinephrine, and the number of c-Fos-positive neurons in SIH rats increased compared with those in control rats. Pre and postsynaptic densities in the RVLM also increased in SIH rats. IFN-γ and CCL2 expression levels were significantly reduced in the RVLM of the SIH group, whose microglia also exhibited an impaired capacity for synapse engulfment. IFN-γ elevation increased CCL2 expression and microglial synaptic engulfment and decreased synaptic density in vivo and in vitro. However, CCL2 inhibition reversed these effects. Moreover, the reduction of neuronal excitability, RSNA, plasma norepinephrine, and BP by IFN-γ was abrogated through CCL2 expression. IFN-γ deficiency in the RVLM impaired the microglial engulfment of synapses by inhibiting CCL2 expression and increasing synaptic density and neuronal excitability, thereby contributing to SIH progression. Targeting IFN-γ may be considered a potential strategy to combat SIH.Graphical Abstract, http://links.lww.com/HJH/C203.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.