Abstract

BackgroundSpinal cord injury (SCI) causes nearly all patients to suffer from protracted disabilities. An emerging therapeutic strategy involving the recruitment of endogenous neural stem cells (NSCs) has been developed. However, endogenous NSCs in the adult spinal cord differentiate into mostly astrocytes after traumatic injury, forming glial scars, which is a major cause of regeneration failure in SCI. Thus, understanding which factors drive the activation and differentiation of endogenous NSCs after SCI is critical for developing therapeutic drugs.MethodsThe infiltration, state, and location of CD8+ T cells in spinal cord after traumatic injury were analyzed by flow cytometry and immunofluorescence (IF) staining. The Basso Mouse Scale (BMS) scores and rotarod testing were used for motor behavioral analysis. NSCs were co-cultured with CD8+ T cells. EdU assay was used to detect proliferative cells. Western blotting was used to analyze the expression levels of STAT1, p-STAT1, and p27. ChIP-seq and ChIP-qRT-PCR analyses were used to detect the downstream of STAT1. Nestin-CreERT2::Ai9 transgenic mice were used to genetic lineage tracing of Nestin+ NSCs after SCI in vivo.ResultsA prolonged increase of activated CD8+ T cells occurs in the injured spinal cords. The behavioral analysis demonstrated that the administration of an anti-CD8 antibody promotes the recovery of locomotor function. Then, we discovered that CD8+ T cells suppressed the proliferation of NSCs and promoted the differentiation of NSCs into astrocytes by the IFN-γ-STAT1 pathway in vitro. ChIP-seq and ChIP-qRT-PCR analysis revealed that STAT1 could directly bind to the promoters of astrocyte marker genes GFAP and Aldh1l1. Genetic lineage tracing of Nestin+ NSCs demonstrated that most NSCs differentiated into astrocytes following SCI. Depleting CD8+ T cells reduced the differentiation of NSCs into astrocytes and instead promoted the differentiation of NSCs into oligodendrocytes.ConclusionIn conclusion, CD8+ T cells suppressed the proliferation of NSCs and promoted the differentiation of NSCs into astrocytes by the IFN-γ-STAT1-GFAP/Aldhl1l axis. Our study identifies INF-γ as a critical mediator of CD8+ T-cell-NSC cross talk and a potential node for therapeutic intervention in SCI.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.