Abstract

TLR 4 stimulation of innate immune cells induces a MyD88-independent signaling pathway that leads to the production of IFN-beta. In this study, we demonstrate glycogen synthase kinase 3-beta (GSK3-beta) plays a fundamental role in this process. Suppression of GSK3-beta activity by either pharmacological inhibition, small interfering RNA-mediated gene silencing, or ectopic expression of a kinase-dead GSK3-beta mutant enhanced IFN-beta production by TLR4-stimulated macrophages. Conversely, ectopic expression of a constitutively active GSK3-beta mutant severely attenuated IFN-beta production. GSK3-beta was found to negatively control the cellular levels of the transcription factor c-Jun and its nuclear association with ATF-2. Small interfering RNA-mediated knockdown of c-Jun levels abrogated the ability of GSK3-beta inhibition to augment IFN-beta, demonstrating that the ability of GSK3 to control IFN-beta production was due to its ability to regulate c-Jun levels. The ability of GSK3 inhibition to control IFN-beta production was confirmed in vivo as mice treated with a GSK3 inhibitor exhibited enhanced systemic levels of IFN-beta upon LPS challenge. These findings identify a novel regulatory pathway controlling IFN-beta production by TLR4-stimulated innate immune cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.