Abstract

Regulatory T (Treg) cells are highly enriched within many tumors and suppress immune responses to cancer. There is intense interest in reprogramming Treg cells to contribute to anti-tumor immunity. OX40 and CD137 are expressed highly on Treg cells, activated and memory T cells, and NK cells. Here, using a novel tetravalent bispecific antibody targeting mouse OX40 and CD137 (FS120m), we show that OX40/CD137 bispecific agonists induce potent anti-tumor immunity partially dependent upon IFN-γ-production by functionally reprogrammed Treg cells. Treatment of tumor-bearing animals with OX40/CD137 bispecific agonists reprograms Treg cells into both fragile Foxp3+ IFN-γ+ cells with decreased suppressive function, and lineage instable Foxp3- IFN-γ+ cells. Treg cell fragility is partially dependent upon IFN-γ signaling, whereas Treg cell instability is associated with reduced IL-2 signaling upon treatment with OX40/CD137 bispecific agonists. Importantly, conditional deletion of Ifng in Foxp3+ Treg cells and their progeny partially reverses the anti-tumor efficacy of OX40/CD137 bispecific agonist therapy, revealing that reprogramming of Treg cells into IFN-γ-producing cells contributes to the efficacy of OX40/CD137 bispecific agonists. These findings provide insights into mechanisms by which bispecific agonist therapies targeting co-stimulatory receptors highly expressed by Treg cells potentiate anti-tumor immunity in mouse models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call