Abstract

Whereas multiple growth-promoting cytokines have been demonstrated to be involved in regulation of the hemopoietic stem cell (HSC) pool, the potential role of negative regulators is less clear. However, IFN-gamma, if overexpressed, can mediate bone marrow suppression and has been directly implicated in a number of bone marrow failure syndromes, including graft-vs-host disease. Whether IFN-gamma might directly affect the function of repopulating HSCs has, however, not been investigated. In the present study, we used in vitro conditions promoting self-renewing divisions of human HSCs to investigate the effect of IFN-gamma on HSC maintenance and function. Although purified cord blood CD34(+)CD38(-) cells underwent cell divisions in the presence of IFN-gamma, cycling HSCs exposed to IFN-gamma in vitro were severely compromised in their ability to reconstitute long-term cultures in vitro and multilineage engraft NOD-SCID mice in vivo (>90% reduced activity in both HSC assays). In vitro studies suggested that IFN-gamma accelerated differentiation of targeted human stem and progenitor cells. These results demonstrate that IFN-gamma can negatively affect human HSC self-renewal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.