Abstract

IFN-γ plays a crucial role in resisting intracellular parasitic protozoa, such as Eimeria species. In our previous study, we identified 4 molecules derived from Eimeria maxima (E. maxima) that significantly inhibited IFN-γ production. However, the mechanism underlying this inhibitory effect remains unknown. In this study, we first investigated the effects of these 4 IFN-γ inhibitory molecules on the expression levels of chicken Toll-like receptors (chTLRs), IL-12, IL-10, TGF-β, and TNF-α in chicken macrophage HD11 and bone marrow-derived dendritic cells (BMDCs). The results demonstrated that these 4 inhibitory molecules significantly downregulated the mRNA levels of chTLR-2, chTLR-4, chTLR-21, and both mRNA and protein levels of IL-12. Subsequently, to clarify the effects of these 4 inhibitory molecules on the IL-12 secretion-related signaling pathways in chicken macrophages, qRT-PCR and Western blot were used to detect the changes of key molecules involved in the signaling pathways of IL-12 secretion (NF-κB, ERK1/2, p38, JNK, STAT3) following coincubation with these inhibitory molecules. Finally, RNAi was employed to verify the function of key molecules in the signaling pathway. The results revealed a significant upregulation in the expression of ERK1/2 phosphorylated protein induced by the 4 inhibitory molecules. Knockdown of the ERK1/2 gene significantly reduced the inhibitory effect of the 4 E. maxima inhibitory molecules on IL-12. These findings indicate that the 4 inhibitory molecules can inhibit the secretion of IL-12 by upregulating the expression of ERK1/2 phosphorylated protein, which is a key molecule in the ERK-MAPK pathway. Our study may contribute to elucidating the mechanisms underlying immune evasion during E. maxima infections, thereby providing new insights for the control of chicken coccidiosis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.