Abstract

Dendritic cells (DCs) are central players in immunity and are used in immune-adoptive vaccine protocols in humans. IFN-gamma, mandatory in Th-1 polarization and endowed with regulatory properties, is currently used to condition monocyte-derived DCs (MDDC) in cancer therapy and in clinical trials to treat chronic infectious diseases. We therefore performed a wide analysis of IFN-gamma signaling consequences on MDDC multiple effector functions. IFN-gamma itself induced IL-27p28 expression and survival but did not promote relevant CCR7-driven migration or activated Th-1 cell recruitment capacity in MDDC. Administered in association with classical maturation stimuli such as CD40 or TLR-4 stimulation, IFN-gamma up-regulated IL-27 and IL-12 production, CCR7-driven migration, and activated Th-1 cell recruitment, whereas it decreased IL-10 production and STAT3 phosphorylation. CD38 signaling, which orchestrates migration, survival, and Th-1 polarizing ability of mature MDDC, was involved in IFN-gamma-mediated effects. Thus, IFN-gamma is a modulator of multiple DC effector functions that can be helpful in MDDC-based vaccination protocols. These data also help understand the dual role exerted by this cytokine as both an inducer and a regulator of inflammation and immune response.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call