Abstract

Preeclampsia is a serious pregnancy-specific hypertensive syndrome that is characterized by widespread maternal endothelial dysfunction. Previous studies have shown that increased levels of circulating cell-free fetal DNA in women with preeclampsia correspond to the degree of disease severity; however, it is unknown whether this DNA is a key signal that contributes to the development of preeclampsia. The detection of DNA is critical to appropriate innate immune responses. The interferon-inducible protein 16 (IFI16) - a member of the HIN-200 family - is an innate immune receptor for intracellular DNA, which is implicated in the control of cell growth, apoptosis, angiogenesis, and immunomodulation; however, its role in preeclampsia remains unresolved. Here, we tested the hypothesis that this DNA can activate IFI16 in the placentas of women with preeclampsia and is sufficient to induce soluble fms-like tyrosine kinase 1 (sFlt-1) and soluble endoglin (sEng) production. We characterized IFI16 in severe preeclamptic placentas and assessed whether DNA increased the release of sFlt-1 and sEng from trophoblast cells and placental explants. Furthermore, we determined whether IFI16 was involved in DNA-induced sFlt-1 and sEng production. Placental immunoreactivity and protein levels of IFI16 were significantly increased in women with preeclampsia compared to matched control women. Treatment of human trophoblasts with the IFI16 agonist poly(dA:dT) significantly increased IFI16 levels. Furthermore, poly(dA:dT) induced sFlt-1 and sEng production by human trophoblasts in an IFI16-dependent manner. We conclude that trophoblast cells respond to cell-free fetal DNA through the IFI16 receptor, resulting in the production of the preeclampsia-related antiangiogenic factors sFlt-1 and sEng.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.