Abstract
Modern convolutional neural network (CNN)-based object detectors focus on feature configuration during training but often ignore feature optimization during inference. In this article, we propose a new feature optimization approach to enhance features and suppress background noise in both the training and inference stages. We introduce a generic inference-aware feature filtering (IFF) module that can be easily combined with existing detectors, resulting in our iffDetector. Unlike conventional open-loop feature calculation approaches without feedback, the proposed IFF module performs the closed-loop feature optimization by leveraging high-level semantics to enhance the convolutional features. By applying the Fourier transform to analyze our detector, we prove that the IFF module acts as a negative feedback that can theoretically guarantee the stability of the feature learning. IFF can be fused with CNN-based object detectors in a plug-and-play manner with little computational cost overhead. Experiments on the PASCAL VOC and MS COCO datasets demonstrate that our iffDetector consistently outperforms state-of-the-art methods with significant margins.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Neural Networks and Learning Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.