Abstract

Unlike domain adaptation methods that rely on single-source information for transfer diagnosis, multi-source information-based domain adaptation methods can leverage the extensive diagnostic features derived from multiple sources of data. However, the issues of potential feature conflicts, the critical fault information loss, and high computational burdens still hinder effective applications of multi-source information domain adaptation for transfer diagnosis. For resolving these issues, this study proposes an unsupervised multi-source information domain adaptation approach for transfer fault diagnosis, which utilizes an information fusion-enhanced domain adaptation attention network (IF-EDAAN). Firstly, an information fusion method that converts multi-source information into a fused image using principal component analysis and signal-to-image conversion is employed to enhance and compress data from both the source and target domains. Then, a parameter-free attention mechanism (PFAM) module is proposed to adaptively focus on the domain-invariant temporal and spatial features of information fusion samples. Subsequently, the weight assignment module and joint maximum mean discrepancy metric strategy are proposed to mitigate negative transfer, thus enabling the effective extraction and alignment of domain-invariant temporal and spatial features. Finally, experiment validations on two rotating machinery datasets have been comprehensively elaborated to verify the efficacy and advantages of our proposed IF-EDAAN approach for transfer fault diagnosis across different working conditions. Experiment results have proved that our proposed IF-EDAAN approach can rapidly adapt to new transfer diagnostic scenarios with impressive performance and outperform several mainstream unsupervised domain adaptation approaches.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.