Abstract
The traditional Chinese medicinal plant, Isodon L., is remarkably rich in pharmacologically active ent-kaurane diterpenoids of diverse carbon skeletons. In an effort to create a resource for gene discovery and elucidate the biosynthesis of Isodonent-kaurane diterpenoids, three cDNAs (named IeCPS1, IeCPS2 and IeCPS2a) were isolated putatively encoding copalyl diphosphate synthases from Isodoneriocalyx leaves. Recombinant proteins of IeCPS1 and IeCPS2 were expressed, respectively, in Escherichia coli, and were shown to specifically convert geranylgeranyl diphosphate to copalyl diphosphate as demonstrated by GC–MS analyses. Based on tissue-specific expression and metabolic localization studies, the IeCPS2 transcripts were detected in young and mature leaves where the dominant ent-kaurane diterpenoid maoecrystal B accumulates, whereas no detectable expression of IeCPS2 was observed in germinating seeds where the gibberellin biosynthetic pathway is usually active. In addition, no evidence for maoecrystal B was found in germinating seeds. On the other hand, IeCPS1 transcripts significantly accumulated in germinating seeds as well as in leaves. The biochemical and molecular genetic evidence thus indicated that IeCPS2 is a copalyl diphosphate synthase potentially involved in the biosynthesis of Isodon diterpenoids in leaves, while IeCPS1 is more probably relevant to gibberellin formation and may, in addition, participate in Isodonent-kaurane diterpenoid production.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.