Abstract

It remains challenging for a Convolutional Neural Network (CNN) accelerator to maintain high hardware utilization and low processing latency with restricted on-chip memory. This paper presents an In-Execution Configuration Accelerator (IECA) that realizes an efficient control scheme, exploring architectural data reuse, unified in-execution controlling, and pipelined latency hiding to minimize configuration overhead out of the computation scope. The proposed IECA achieves row-wise convolution with tiny distributed buffers and reduces the size of total on-chip memory by removing 40% of redundant memory storage with shared delay chains. By exploiting a reconfigurable Sequence Mapping Table (SMT) and Finite State Machine (FSM) control, the chip realizes cycle-accurate Processing Element (PE) control, automatic loop tiling and latency hiding without extra time slots for pre-configuration. Evaluated on AlexNet and VGG-16, the IECA retains over 97.3% PE utilization and over 95.6% memory access time hiding on average. The chip is designed and fabricated in a UMC 55-nm process running at a frequency of 250 MHz and achieves an area efficiency of 30.55 GOPS/mm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> and 0.244 GOPS/KGE (kilo-gate-equivalent), which makes an over <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$2.0\times $ </tex-math></inline-formula> and <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$2.1\times $ </tex-math></inline-formula> improvement, respectively, compared with that of previous related works. Implementation of the IEC control scheme uses only a 0.55% area of the 2.75 mm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> core.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.