Abstract

We will display two different kinds of experiments, which are Network-based Intrusion Detection System (NIDS)-based and dynamic-based analysis shows how artificial intelligence helps us detecting and classify malware. On the NID, we use CICIDS2017 as a research dataset, embedding high dimensional features and find out redundant features in the raw dataset by Random Forest algorithm, reach 99.93% accuracy and 0.3% of the false alert rate. We extract the function calls in malware data by the method proposed in this paper to generate text data. The algorithm n-gram and Term Frequency-Inverse Document Frequency (TF-IDF) are used to process text data, converts them into numeric features, and by another feature selection methods, we reduce the training time, achieve 87.08% accuracy, and save 87.97% training time in dynamic-based analysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.