Abstract

Intrinsically disordered regions (IDRs), which may be functionally important, are common in proteins. However, the structures of IDRs are often missing due to their highly dynamic nature. In the study of IDRs, integrative modeling combining computational simulations and experimental data is a common approach, for which initial structures of the IDRs need to be built. However, applying this method to large protein complexes is challenging because existing structure generation tools are sometimes unsuitable for IDRs in large systems. To facilitate convenient and rapid structure generation of IDRs in large protein complexes, we developed a computational tool named IDRWalker based on self-avoiding random walks. Three protein complexes were used to illustrate the efficiency of the tool, and it was found that IDRs in more than 800 chains of the nuclear pore complex could be generated in minutes. These structures of large protein complexes with added IDRs can be further used to run computational simulations for integrative modeling.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.