Abstract
Timely diagnosis of medical conditions can significantly mitigate the risks they pose to human life. Consequently, there is an urgent demand for an effective auxiliary model that assists physicians in accurately diagnosing medical conditions based on imaging data. While multi-threshold image segmentation models have garnered considerable attention due to their simplicity and ease of implementation, the selection of threshold combinations greatly influences the segmentation performance. Traditional optimization algorithms often require substantial time to address multi-threshold image segmentation problems, and their segmentation accuracy is frequently unsatisfactory. As a result, metaheuristic algorithms have been employed in this domain. However, several algorithms suffer from drawbacks such as premature convergence and inadequate exploration of the solution space when it comes to threshold selection. For instance, the recently proposed optimization algorithm RIME, inspired by the physical phenomenon of rime-ice, falls short in terms of avoiding local optima and fully exploring the solution space. Therefore, this study introduces an enhanced version of RIME, called IDRM, which incorporates an interactive mechanism and Gaussian diffusion strategy. The interactive mechanism facilitates information exchange among agents, enabling them to evolve towards more promising directions and increasing the likelihood of discovering the optimal solution. Additionally, the Gaussian diffusion strategy enhances the agents' local exploration capabilities and expands their search within the solution space, effectively preventing them from becoming trapped in local optima. Experimental results on 30 benchmark test functions demonstrate that IDRM exhibits favorable optimization performance across various optimization functions, showcasing its robustness and convergence properties. Furthermore, the algorithm is applied to select threshold combinations for brain tumor image segmentation, and the results are evaluated using metrics such as Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index Measure (SSIM). The overall findings consistently highlight the exceptional performance of this approach, further validating the effectiveness of IDRM in addressing image segmentation problems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.