Abstract
Proteins interact with nucleic acids to regulate the life activities of organisms. Therefore, how to accurately and efficiently identify nucleic acid-binding proteins (NABPs) is particularly significant. Some sequence-based computational methods have been proposed to identify DNA- and RNA-binding proteins in previous studies. However, the benchmark datasets used by these methods ignore the proportion of NABPs in the real world, and some integration methods only integrate traditional machine learning algorithms, resulting in limited prediction performance. In this study, we proposed a sequence-based method called iDRBP-ECHF to predict the DNA-binding proteins (DBPs) and RNA-binding proteins (RBPs). We constructed a benchmark dataset by considering the proportion of positive and negative samples in the real world, and used down-sampling to generate three relatively balanced datasets to train the iDRBP-ECHF. In addition, we incorporated the deep learning algorithms into the framework to obtain a more compact high-level feature representation of the input data. The results on two independent datasets show that it achieves the most advanced performance and is superior to the other existing sequence-based DBP and RBP prediction methods. In addition, we set up a webserver iDRBP-ECHF, which can be accessed at http://bliulab.net/iDRBP-ECHF.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.