Abstract
Bacteria, Archaea, and Eukarya all share a common set of metabolic reactions. This implies that the function and topology of central metabolism has been evolving under purifying selection over deep time. Central metabolism may similarly evolve under purifying selection during long-term evolution experiments, although it is unclear how long such experiments would have to run (decades, centuries, millennia) before signs of purifying selection on metabolism appear. I hypothesized that central and superessential metabolic enzymes would show evidence of purifying selection in the long-term evolution experiment with Escherichia coli (LTEE). I also hypothesized that enzymes that specialize on single substrates would show stronger evidence of purifying selection in the LTEE than generalist enzymes that catalyze multiple reactions. I tested these hypotheses by analyzing metagenomic time series covering 62,750 generations of the LTEE. I find mixed support for these hypotheses, because the observed patterns of purifying selection are idiosyncratic and population-specific. To explain this finding, I propose the Jenga hypothesis, named after a children's game in which blocks are removed from a tower until it falls. The Jenga hypothesis postulates that loss-of-function mutations degrade costly, redundant, and non-essential metabolic functions. Replicate populations can therefore follow idiosyncratic trajectories of lost redundancies, despite purifying selection on overall function. I tested the Jenga hypothesis by simulating the evolution of 1,000 minimal genomes under strong purifying selection. As predicted, the minimal genomes converge to different metabolic networks. Strikingly, the core genes common to all 1,000 minimal genomes show consistent signatures of purifying selection in the LTEE.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.