Abstract
There are many challenges for face based identity verification. It is one of fundamental topics in image processing and video analysis, and so on. A novel approach has been developed for facial identity verification based on a facial pose pool, which is constructed in an incremental clustering way to find both facial spatial information and orientation diversity. Bag of words is selected to extract image features from the facial pose pool in affine SIFT descriptor. The visual codebook is generated ink-means and Gaussian mixture model. Posterior pseudo probabilities are used to compute the similarities between each visual word and corresponding local features for image representation. Comparisons with some state-of-the-arts have highlighted the superior performance of the proposed method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Advanced Computational Intelligence and Intelligent Informatics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.