Abstract

The ETS domain proteins are a diverse family of transcriptional activators that have been implicated recently in the expression of a number of cell-specific and viral promoters. Nuclear respiratory factor 2 (NRF-2) is a nuclear transcription factor that activates the proximal promoter of the rat cytochrome c oxidase subunit IV (RCO4) gene through tandem sequence elements. These elements conform to the consensus for high-affinity ETS domain recognition sites. We have now purified NRF-2 to homogeneity from HeLa cells and find that it consists of five polypeptides, only one of which has intrinsic DNA-binding ability. The others participate in the formation of heteromeric complexes with distinct binding properties. NRF-2 also specifically recognizes multiple binding sites in the mouse cytochrome c oxidase subunit Vb (MCO5b) gene. As in the functionally related RCO4 gene, tandemly arranged NRF-2 sites are essential for the activity of the proximal MCO5b promoter, further substantiating a role for NRF-2 in respiratory chain expression. Determination of peptide sequences from the various subunits of HeLa NRF-2 reveals a high degree of sequence identity with mouse GA-binding protein (GABP), a multisubunit ETS domain activator of herpes simplex virus immediate early genes. A cellular role in the activation of nuclear genes specifying mitochondrial respiratory function is thus assigned to an ETS domain activator of viral promoters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.