Abstract

Mammalian lysyl-tRNA synthetase (LysRS) has an N-terminal polypeptide chain extension appended to a prokaryotic-like synthetase domain. This extension, termed a tRNA-interacting factor (tIF), possesses a RNA-binding motif [KxxxK(K/R)xxK] that binds nonspecifically the acceptor TPsiC stem-loop domain of tRNA and provides a potent tRNA binding capacity to this enzyme. Consequently, native LysRS aminoacylates a RNA minihelix mimicking the amino acid acceptor stem-loop domain of tRNA(3)(Lys). Here, examination of minihelix recognition showed that mammalian LysRS aminoacylates RNA minihelices without specificity of sequence, revealing that none of the nucleotides from the acceptor TPsiC stem-loop domain are essential determinants of tRNA(Lys) acceptor identity. To test whether the tIF domain reduces the specificity of the synthetase with regard to complete tRNA molecules, aminoacylation of wild-type and mutant noncognate tRNAs by wild-type or N-terminally truncated LysRS was examined. The presence of the UUU anticodon of tRNA(Lys) appeared to be necessary and sufficient to transform yeast tRNA(Asp) or tRNA(i)(Met) into potent lysine acceptor tRNAs. Thus, nonspecific RNA-protein interactions between the acceptor stem of tRNA and the tIF domain do not relax the tRNA specificity of mammalian LysRS. The possibility that interaction of the full-length cognate tRNA with the synthetase is required to induce the catalytic center of the enzyme into a productive conformation is discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.