Abstract

With the rapid development of cloud computing, an increasing number of individuals and organizations are sharing data in the public cloud. To protect the privacy of data stored in the cloud, a data owner usually encrypts his data in such a way that certain designated data users can decrypt the data. This raises a serious problem when the encrypted data needs to be shared to more people beyond those initially designated by the data owner. To address this problem, we introduce and formalize an identity-based encryption transformation (IBET) model by seamlessly integrating two well-established encryption mechanisms, namely identity-based encryption (IBE) and identity-based broadcast encryption (IBBE). In IBET, data users are identified and authorized for data access based on their recognizable identities, which avoids complicated certificate management in usual secure distributed systems. More importantly, IBET provides a transformation mechanism that converts an IBE ciphertext into an IBBE ciphertext so that a new group of users not specified during the IBE encryption can access the underlying data. We design a concrete IBET scheme based on bilinear groups and prove its security against powerful attacks. Thorough theoretical and experimental analyses demonstrate the high efficiency and practicability of the proposed scheme.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.