Abstract
Fog computing allows to connect the edge of the network, consisting of low cost Internet of Things devices, with high end cloud servers. Fog devices can perform data processing, which can significantly reduce the delay for the application. Moreover, data aggregation can be carried out by fog devices which decrease the bandwidth needed being very important for the wireless part of the communication with the cloud servers. The edge-fog-cloud architecture is currently being rolled out for several applications in the field of connected cars, health care monitoring, etc. In this paper, we propose an identity-based, mutual authenticated key agreement protocol for this fog architecture, in which end device and fog are able to establish a secure communication without leakage of their identities. Only the cloud server is able to control the identities of device and fog. We formally prove that the session keys are also protected in the Canetti–Krawczyk security model, in which adversaries are considered to have access to session state specific information, previous session keys, or long-term private keys. The scheme is very efficient as it only utilises elliptic curve operations and basic symmetric key operations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.