Abstract
Let R be a non-commutative prime ring of characteristic different from 2 with Utumi quotient ring U and extended centroid C, f(x1,…,xn) a multilinear polynomial over C which is not an identity for R, F and G two non-zero generalized derivations of R. If F(u)G(u)=0 for all u ∈ f(R)= {f(r1,…,rn): ri∈ R}, then one of the following holds: (i) There exist a, c ∈ U such that ac=0 and F(x)=xa, G(x)=cx for all x ∈ R; (ii) f(x1,…,xn)2is central valued on R and there exist a, c ∈ U such that ac=0 and F(x)=ax, G(x)=xc for all x ∈ R; (iii) f(x1,…,xn) is central valued on R and there exist a,b,c,q ∈ U such that (a+b)(c+q)=0 and F(x)=ax+xb, G(x)=cx+xq for all x ∈ R.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.