Abstract
Let R be a semiprime ring and α be an automorphism of R. A mapping F : R → R (not necessarily additive) is called multiplicative generalized (α,α)-derivation if there exists a unique (α,α)-derivation d of R such that F(xy) = F(x)α(y) + α(x)d(y) for all x,y ∈ R. In the present paper, we intend to study several algebraic identities involving multiplicative generalized (α,α)-derivations on appropriate subsets of semiprime rings and collect the information about the commutative structure of these rings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.