Abstract
The Cayley-Dickson process gives a recursive method of constructing a nonassociative algebra of dimension 2 n for all n ≥ 0, beginning with any ring of scalars. The algebras in this sequence are known to be flexible quadratic algebras; it follows that they are noncommutative Jordan algebras: they satisfy the flexible identity in degree 3 and the Jordan identity in degree 4. For the integral sedenion algebra (the double of the octonions) we determine a complete set of generators for the multilinear identities in degrees ≤ 5. Since these identities are satisfied by all flexible quadratic algebras, it follows that a multilinear identity of degree ≤ 5 is satisfied by all the algebras obtained from the Cayley-Dickson process if and only if it is satisfied by the sedenions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.