Abstract
Understanding the way performers use expressive resources of a given instrument to communicate with the audience is a challenging problem in the sound and music computing field. Working directly with commercial recordings is a good opportunity for tackling this implicit knowledge and studying well-known performers. The huge amount of information to be analyzed suggests the use of automatic techniques, which have to deal with imprecise analysis and manage the information in a broader perspective. This work presents a new approach, Trend-based modeling, for identifying professional performers in commercial recordings. Concretely, starting from automatically extracted descriptors provided by state-of-the-art tools, our approach performs a qualitative analysis of the detected trends for a given set of melodic patterns. The feasibility of our approach is shown for a dataset of monophonic violin recordings from 23 well-known performers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Intelligent Data Analysis
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.