Abstract

Future genetic progress in wheat grain yield will depend on increasing biomass and this must be achieved without commensurate increases in nitrogen (N) fertilizer inputs to minimize environmental impacts. In recent decades there has been a loss of genetic diversity in wheat through plant breeding. However, new genetic diversity can be created by incorporating genes into bread wheat from wild wheat relatives. Our objectives were to investigate amphidiploids derived from hybrids of bread wheat (Triticum aestivum L.) and related species from the genera Aegilops, Secale, Thinopyrum and Triticum for expression of higher biomass, N-use efficiency (NUE) and leaf photosynthesis rate compared to their bread wheat parents under high and low N conditions. Eighteen amphidiploid lines and their bread wheat parents were examined in high N (HN) and low N (LN) treatments under glasshouse conditions in two years. Averaged across years, grain yield reduced by 38% under LN compared to HN conditions (P = 0.004). Three amphidiploid lines showed positive transgressive segregation compared to their bread wheat parent for biomass per plant under HN conditions. Positive transgressive segregation was also identified for flag-leaf photosynthesis both pre-anthesis and post-anthesis under HN and LN conditions. For N uptake per plant at maturity positive transgressive segregation was identified for one amphidiploid line under LN conditions. Our results indicated that introgressing traits from wild relatives into modern bread wheat germplasm offers scope to raise biomass and N-use effciency in both optimal and low N availability environments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call