Abstract
Commonsense reasoning at scale is a critical problem for modern cognitive systems. Large theories have millions of axioms, but only a handful are relevant for answering a given goal query. Irrelevant axioms increase the search space, overwhelming unoptimized inference engines in large theories. Therefore, methods that help in identifying useful inference paths are an essential part of large cognitive systems. In this paper, we use retrograde analysis to build a database of proof paths that lead to at least one successful proof. This database helps the inference engine identify more productive parts of the search space. A heuristic based on this approach is used to order nodes during a search. We study the efficacy of this approach on hundreds of queries from the Cyc KB. Empirical results show that this approach leads to significant reduction in inference time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the AAAI Conference on Artificial Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.