Abstract

Building machine learning models that identify unproven cancer treatments on the Health Web is a promising approach for dealing with the dissemination of false and dangerous information to vulnerable health consumers. Aside from the obvious requirement of accuracy, two issues are of practical importance in deploying these models in real world applications. (a) Generalizability: The models must generalize to all treatments (not just the ones used in the training of the models). (b) Scalability: The models can be applied efficiently to billions of documents on the Health Web. First, we provide methods and related empirical data demonstrating strong accuracy and generalizability. Second, by combining the MapReduce distributed architecture and high dimensionality compression via Markov Boundary feature selection, we show how to scale the application of the models to WWW-scale corpora. The present work provides evidence that (a) a very small subset of unproven cancer treatments is sufficient to build a model to identify unproven treatments on the web; (b) unproven treatments use distinct language to market their claims and this language is learnable; (c) through distributed parallelization and state of the art feature selection, it is possible to prepare the corpora and build and apply models with large scalability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.