Abstract

New needs to determine the crystallography of nanocrystals arise with the advent of science and engineering on the nanometer scale. Direct space high-resolution phase-contrast transmission electron microscopy (HRTEM) and atomic resolution Z-contrast scanning TEM (Z-STEM), when combined with tools for image-based nanocrystallography possess the capacity to meet these needs. This paper introduces such a tool, i.e. fringe fingerprinting in two dimensions (2D), for the identification of unknown nanocrystal phases and compares this method briefly to qualitative standard powder X-ray diffractometry (i.e. spatial frequency fingerprinting). Free-access crystallographic databases are also discussed because the whole fingerprinting concept is only viable if there are comprehensive databases to support the identification of an unknown nanocrystal phase. This discussion provides the rationale for our ongoing development of a dedicated free-access Nano-Crystallography Database (NCD) that contains comprehensive information on both nanocrystal structures and morphologies. The current status of the NCD project and plans for its future developments are briefly outlined. Although feasible in contemporary HRTEMs and Z-STEMs, fringe fingerprinting in 2D (and image-based nanocrystallography in general) will become much more viable with the increased availability of aberration-corrected transmission electron microscopes. When the image acquisition and interpretation are, in addition, automated in such microscopes, fringe fingerprinting in 2D will be able to compete with powder X-ray diffraction for the identification of unknown nanocrystal phases on a routine basis. Since it possesses a range of advantages over powder X-ray diffractometry, e.g., fringe fingerprint plots contain much more information for the identification of an unknown crystal phase, fringe fingerprinting in 2D may then capture a significant part of the nanocrystal metrology market.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.