Abstract
We survey more than 240 000 crystallized mononuclear transition metal complexes (TMCs) to identify trends in preferred geometric structure and metal coordination. While we observe that an increased level of d filling correlates with a lower coordination number preference, we note exceptions, and we observe undersampling of 4d/5d transition metals and 3p-coordinating ligands. For the one-third of mononuclear TMCs that are octahedral, analysis of the 67 symmetry classes of their ligand environments reveals that complexes often contain monodentate ligands that may be removable, forming an open site amenable to catalysis. Due to their use in catalysis, we analyze trends in coordination by tetradentate ligands in terms of the capacity to support multiple metals and the variability of coordination geometry. We identify promising tetradentate ligands that co-occur in crystallized complexes with labile monodentate ligands that would lead to reactive sites. Literature mining suggests that these ligands are untapped as catalysts, motivating proposal of a promising octa-functionalized porphyrin.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.