Abstract
Tumor cell-released LC3+ extracellular vesicles (LC3+ EVs) participate in immunosuppression during autophagy and contribute to the occurrence and development of breast cancer. In view of the strong association between the LC3+ EVs and breast cancer, developing an effective strategy for the quantitative detection of LC3+ EVs levels with high sensitivity to identify LC3+ EVs as new biomarkers for accurate diagnosis of breast cancer is crucial, but yet not been reported. Herein, an ultrasensitive electrochemical immunosensor is presented for the quantitative determination of LC3+ EVs using a three-dimensional graphene oxide hydrogel-methylene blue composite as a redox probe, showing a low detection limit and a wide linear range. With this immunosensor, the expression levels of LC3+ EVs in various practical sample groups including different cancer cell lines, the peripheral blood of tumor-bearing mice before and after immunotherapy, and the peripheral blood from breast cancer patients with different subtypes and stages were clearly distinguished. This study demonstrated that LC3+ EVs were superior as biomarkers for the accurate diagnosis of breast cancer compared to traditional biomarkers, particularly for cancer subtype discrimination. This work would provide a new noninvasive detection tool for the early diagnosis and prognosis assessment of breast cancer in clinics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.