Abstract

Structural changes in the brain take place throughout one’s life. Changes related to cognitive decline may delay the stages of the speech production process in the aging brain. For example, semantic memory decline and poor inhibition may delay the retrieval of a concept from the mental lexicon. Electroencephalography (EEG) is a valuable method for identifying the timing of speech production stages. So far, studies using EEG mainly focused on a particular speech production stage in a particular group of subjects. Differences between subject groups and between methodologies have complicated identifying time windows of the speech production stages. For the current study, the speech production stages lemma retrieval, lexeme retrieval, phonological encoding, and phonetic encoding were tracked using a 64-channel EEG in 20 younger adults and 20 older adults. Picture-naming tasks were used to identify lemma retrieval, using semantic interference through previously named pictures from the same semantic category, and lexeme retrieval, using words with varying age of acquisition. Non-word reading was used to target phonological encoding (using non-words with a variable number of phonemes) and phonetic encoding (using non-words that differed in spoken syllable frequency). Stimulus-locked and response-locked cluster-based permutation analyses were used to identify the timing of these stages in the full time course of speech production from stimulus presentation until 100 ms before response onset in both subject groups. It was found that the timing of each speech production stage could be identified. Even though older adults showed longer response times for every task, only the timing of the lexeme retrieval stage was later for the older adults compared to the younger adults, while no such delay was found for the timing of the other stages. The results of a second cluster-based permutation analysis indicated that clusters that were observed in the timing of the stages for one group were absent in the other subject group, which was mainly the case in stimulus-locked time windows. A z-score mapping analysis was used to compare the scalp distributions related to the stages between the older and younger adults. No differences between both groups were observed with respect to scalp distributions, suggesting that the same groups of neurons are involved in the four stages, regardless of the adults’ age, even though the timing of the individual stages is different in both groups.

Highlights

  • Effects of Aging on the BrainStructural changes in the brain, such as a reduction in cortical thickness (Freeman et al, 2008; Zheng et al, 2018), a decrease in the number of cortical folds (Zheng et al, 2018), and a reduction in gray (Freeman et al, 2008) and white matter (Marner et al, 2003) take place throughout one’s lifetime

  • Younger Adults In the younger adults, a difference between the first and fifth ordinal positions that was taken as evidence for the stage of lemma retrieval was revealed in the latency range from 100 to 265 ms (p = 0.005) after stimulus onset

  • In the lemma retrieval task, the cumulative semantic interference effect caused increased response times for items belonging to the same category when they were presented at the fifth ordinal position compared to when they were presented at the first ordinal position

Read more

Summary

Introduction

Effects of Aging on the BrainStructural changes in the brain, such as a reduction in cortical thickness (Freeman et al, 2008; Zheng et al, 2018), a decrease in the number of cortical folds (Zheng et al, 2018), and a reduction in gray (Freeman et al, 2008) and white matter (Marner et al, 2003) take place throughout one’s lifetime. The connectivity within the cingulo-opercular network [CON; including dorsal anterior cingulate, medial superior frontal cortex, anterior insula, frontal operculum, and anterior prefrontal cortex (Dosenbach et al, 2007)] and the frontoparietal control network [FPCN; including the lateral prefrontal cortex, anterior cingulate cortex, and inferior parietal lobule (Vincent et al, 2008)] reduces with aging (Geerligs et al, 2015). These networks modulate higher cognitive functions involved in language processing, such as working memory and reading. No delay in the processing of information has been observed in the visual network with aging

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call