Abstract
AbstractClimate models show that soil moisture and its subseasonal fluctuations have important impacts on the surface latent heat flux, thus regulating surface temperature variations. Using correlations between monthly anomalies in net absorbed radiative fluxes, precipitation, 2-m air temperature, and soil moisture in the ERA-Interim reanalysis and the HadCM3 climate model, we develop a linear diagnostic model to quantify the major effects of land–atmosphere interactions on summertime surface temperature variability. The spatial patterns in 2-m air temperature and soil moisture variance from the diagnostic model are consistent with those from the products from which it was derived, although the diagnostic model generally underpredicts soil moisture variance. We use the diagnostic model to quantify the impact of soil moisture, shortwave radiation, and precipitation anomalies on temperature variance in wet and dry regions. Consistent with other studies, we find that fluctuations in soil moisture amplify temperature variance in dry regions through their impact on latent heat flux, whereas in wet regions temperature variability is muted because of high mean evapotranspiration rates afforded by plentiful surface soil moisture. We demonstrate how the diagnostic model can be used to identify sources of temperature variance bias in climate models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.