Abstract

Nonstructural carbohydrate (NSC) remobilization remains poorly understood in trees. In particular, it remains unclear (i) which tissues (e.g., living bark or xylem) and compounds (sugars or starch) in woody plants are the main sources of remobilized carbon, (ii) to what extent these NSC pools can be depleted and (iii) whether initial NSC mass or concentration is a better predictor of regrowth potential following disturbance. To address these questions, we collected root segments from a large mature trembling aspen stand; we then allowed them to resprout (sucker) in the dark and remobilize NSC until all sprouts had died. We found that initial starch mass, not concentration, was the best predictor of subsequent sprout mass. In total, more NSC mass (~4×) was remobilized from the living inner bark than the xylem of the roots. After resprouting, root starch was generally depleted to <0.6% w/w in both tissues. In contrast, a large portion of sugars appear unavailable for remobilization: sugar concentrations were only reduced to 12% w/w in the bark and 2% in the xylem. These findings suggest that in order to test whether plant processes like resprouting are limited by storage we need to (i) measure storage in the living bark, not just the xylem, (ii) consider storage pool size-not just concentration-and (iii) carefully determine which compounds are actually components of the storage pool.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call