Abstract

AbstractUnderstanding the defect characteristics that occur near the space‐charge regions (SCRs) of kesterite (CZTSSe) solar cells is important because the recombination loss at the CZTSSe/CdS interface is considered the main cause of their low efficiency. CZTSSe surfaces with different elemental compositions were formed without polishing (C00) and with polishing for 20 s (C20) and 60 s (C60). For C60, a specific region near the SCR was excessively Cu‐rich and Zn‐poor compared to C00 and C20. Various charged defects formed where the elemental variation was large. As the main deep acceptor defect energy level (Ea2) near the SCR increased, the efficiency, open‐circuit voltage deficit, and current density degraded, and this phenomenon was especially rapid for large Ea2 values. As the Ea2 near the SCR became deep, the carrier diffusion length decreased more for the CZTSSe solar cells with a low carrier mobility than for the CuInGaSe2 (CIGSe) solar cells. The large amplitude of the electrostatic potential fluctuation in the CZTSSe solar cells induced a high carrier recombination and a short carrier lifetime. Consequently, the properties of the CZTSSe solar cells were more strongly degraded by defects with deep energy levels near the SCR than those of the CIGSe solar cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call