Abstract
This paper introduces a non-parametric methodology based on classical unsupervised clustering techniques to automatically identify the main regions of a space, without requiring the objective number of clusters, so as to identify the major regular states of unknown industrial systems. Indeed, useful knowledge on real industrial processes entails the identification of their regular states, and their historically encountered anomalies. Since both should form compact and salient groups of data, unsupervised clustering generally performs this task fairly accurately; however, this often requires the number of clusters upstream, knowledge which is rarely available. As such, the proposed algorithm operates a first partitioning of the space, then it estimates the integrity of the clusters, and splits them again and again until every cluster obtains an acceptable integrity; finally, a step of merging based on the clusters’ empirical distributions is performed to refine the partitioning. Applied to real industrial data obtained in the scope of a European project, this methodology proved able to automatically identify the main regular states of the system. Results show the robustness of the proposed approach in the fully-automatic and non-parametric identification of the main regions of a space, knowledge which is useful to industrial anomaly detection and behavioral modeling.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.