Abstract

Perovskite solar cells (PSCs) with no charge transport layers (CTLs) could be one of the major device architectures for the production of simple and low-cost devices. However, CTLs-free PSCs based on n-p homojunction have yet to show high power conversion efficiency (PCE), which is most likely due to inadequate light-and charge-management in the p-type perovskite. The device operation is examined using Solar Cell Capacitance Simulator (SCAPS)-software, and a novel n-p homojunction design is proposed to attempt efficient CTLs-free PSCs. Several aspects of p-type layer that can affect device performance, such as acceptor density, photon-harvesting capability, defects density, and resistances to the transport of charge-carriers are scrutinized and adjusted. Furthermore, the effects of different work-functions of metal electrodes are examined. A suitable acceptor concentration is required for oriented charge transport. It is determined that a p-type perovskite with a thickness of 0.3 μm is advantageous for high performance. A metal electrode with a high work-function is essential for efficient device. Consequently, a PCE of 15.60% is obtained with an optimal defect density of E15 cm−3, indicating that n-p homojunction-based CTLs-free PSCs are promising since they simplify the device design and fabrication process while retaining an acceptable PCE.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.