Abstract
Background: Microarray technology is an accurate method for recognition of disease association gene alterations. However, there still is not an effective approach for the evaluation of gene expression in ovarian cancer. Objectives: A reliable approach is described to identify genes associated with ovarian cancer. Methods: Microarray gene expression data analysis was applied to correct systematic differences through four different normalization methods; LOESS, 3D LOESS, and neural network (NN3, NN4). Then, three different clustering methods of K-means, fuzzy C-means, and hierarchical methods were examined on corrected gene expression values. The proposed approach was tested on a reliable source of genes’ information, where the entropy of genes in samples and Euclidean distance were used for gene selection. Results: Our findings revealed that a neural-network-based normalization method could better control the effects of non-biological variations from microarray data. Moreover, the hierarchical clustering was more effective compared to other methods, and resulted in the identification of three genes, including BC029410, DUSP2, and ILDR1, as candidates for disease-association genes. Conclusions: According to the finding of the present study, hierarchical clustering with nonlinear-based normalization could have the ability to prioritize genes for ovarian cancer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.