Abstract

Energetic materials undergo hundreds of chemical reactions during exothermic runaway, generally beginning with the breaking of the weakest chemical bond, the “trigger linkage.” Herein we report the syntheses of a series of pentaerythritol tetranitrate (PETN) derivatives in which the energetic nitrate ester groups are systematically substituted by hydroxyl groups. Because all the PETN derivatives have the same nitrate ester-based trigger linkages, quantum molecular dynamics (QMD) simulations show very similar Arrhenius kinetics for the first reactions. However, handling sensitivity testing conducted using drop weight impact indicates that sensitivity decreases precipitously as nitrate esters are replaced by hydroxyl groups. These experimental results are supported by QMD simulations that show systematic decreases in the final temperatures of the products and the energy release as the nitrate ester functional groups are removed. To better interpret these results, we derive a simple model based only on the specific enthalpy of explosion and the kinetics of trigger linkage rupture that accounts qualitatively for the decrease in sensitivity as nitrate ester groups are removed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call