Abstract

Understanding the sources of precipitation and their impacts is crucial for basin-wide water balance research. Previous research concentrated on the sources of moisture in Ethiopia. The southern part’s moisture sources, however, were not investigated. The primary objective of this study is to trace the source of atmospheric moisture in the Abaya-Chamo sub-basin of southern Ethiopia using numerical water vapor tracers like Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model. Exploring the possible regions of atmospheric vapor roots and the path of moist air initiating rainfall that reaches the basin was feasible for the year 2018–2020. The anticyclone from the Arabian High, which is positioned in the Arabian and Mediterranean seas, was the primary source of moisture supply in the study area during the Belg (March to May) season, according to the back trajectory cluster analysis results. Additionally, the Indian Ocean adds moisture resulting from Mascarene highs brought by equatorial easterlies. Furthermore, during Kiremt (June to September), air masses from the Congo basin were the potential moisture source region for the study areas in combination with air masses originating from the Mascarene highs, located in the South Indian Ocean, and the St. Helena high, centered in the subtropical southern Atlantic Ocean. This study primarily focuses on the complex dynamics of atmospheric moisture sources around Abaya-Chamo sub-basin of southern Ethiopia, offering insight into seasonal fluctuations and contributing various components. These findings contribute to basin-specific water balance research by filling gaps in the previous studies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call