Abstract

To determine the locations and volumes of bone requiring resection to restore range of motion in patients with osteoarthritis of the elbow, using computational modeling. A total of 30 patients with primary osteoarthritis of the elbow and restricted range of motion underwent computed tomography. We used the computed tomography data to generate 3-dimensional models. We simulated flexion and extension of the elbow by flexing and extending the radius and ulna about the flexion-extension axis. The locations and volumes of impinging bone were calculated by the model at flexion angles of 0°, 10°, 20°, 120°, 130°, and 140°. Flexion simulations demonstrated bony overlap in many patients between the coronoid process and the coronoid fossa and between the radial head and the radial fossa. The volumes of these overlapping regions increased as the flexion angle increased. Extension simulations demonstrated bony overlap between the tip and sides of the olecranon and the corresponding regions of the olecranon fossa in most patients. These overlapping volumes increased in greater degrees of elbow extension. In addition, we found bony overlap in extension in several patients between the radial head and an osteophyte present on the posterior aspect of the capitellum. The mean total overlapping volumes at each flexion angle were 59 mm(3) at 120°, 238 mm(3) at 130°, and 589 mm(3) at 140° in flexion; and 184 mm(3) at 20°, 395 mm(3) at 10°, and 741 mm(3) at 0° in extension. Three-dimensional computational models identified the locations and volumes of bony impingement in patients with osteoarthritis of the elbow. They also highlighted certain unique regions of impingement, such as between the radial head with a posterior capitellar osteophyte in extension. This modeling approach may provide the surgeon with a useful patient-specific guide to ensure complete resection of impinging osteophytes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.