Abstract

BackgroundPopulation connectivity, which is essential for the persistence of benthic marine metapopulations, depends on how life history traits and the environment interact to influence larval production, dispersal and survival. Although we have made significant advances in our understanding of the spatial and temporal dynamics of these individual processes, developing an approach that integrates the entire population connectivity process from reproduction, through dispersal, and to the recruitment of individuals has been difficult.We present a population connectivity modelling framework and diagnostic approach for quantifying the impact of i) life histories, ii) demographics, iii) larval dispersal, and iv) the physical seascape, on the structure of connectivity and metapopulation dynamics. We illustrate this approach using the subtidal rocky reef ecosystem of Port Phillip Bay, were we provide a broadly-applicable framework of population connectivity and quantitative methodology for evaluating the relative importance of individual factors in determining local and system outcomes.ResultsThe spatial characteristics of marine population connectivity are primarily influenced by larval mortality, the duration of the pelagic larval stage, and the settlement competency characteristics, with significant variability imposed by the geographic setting and the timing of larval release. The relative influence and the direction and strength of the main effects were strongly consistent among 10 connectivity-based metrics.ConclusionsThese important intrinsic factors (mortality, length of the pelagic larval stage, and the extent of the precompetency window) and the spatial and temporal variability represent key research priorities for advancing our understanding of the connectivity process and metapopulation outcomes.Electronic supplementary materialThe online version of this article (doi:10.1186/s40462-015-0045-6) contains supplementary material, which is available to authorized users.

Highlights

  • Population connectivity, which is essential for the persistence of benthic marine metapopulations, depends on how life history traits and the environment interact to influence larval production, dispersal and survival

  • There are a diversity of evolutionary drivers of dispersal, such as reducing kin competition and inbreeding [1], ‘bet hedging’ offspring success through spatial-temporal variation in reproduction [2], and escaping unfavourable or ephemeral local conditions [3], it is the more proximate drivers of dispersal at ecological time scales which influence the selective pressures on dispersal traits [4]

  • The relative parameter importance across all behaviour strategies were strongly consistent and all results presented do not separate benthic-seeking from diel vertical migration

Read more

Summary

Introduction

Population connectivity, which is essential for the persistence of benthic marine metapopulations, depends on how life history traits and the environment interact to influence larval production, dispersal and survival. We present a population connectivity modelling framework and diagnostic approach for quantifying the impact of i) life histories, ii) demographics, iii) larval dispersal, and iv) the physical seascape, on the structure of connectivity and metapopulation dynamics. We illustrate this approach using the subtidal rocky reef ecosystem of Port Phillip Bay, were we provide a broadly-applicable framework of population connectivity and quantitative methodology for evaluating the relative importance of individual factors in determining local and system outcomes. Connectivity is believed to be important in determining how species will cope in a changing climate by allowing species’ ranges to expand or constrict in response to environmental shifts [10].

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.