Abstract

Focused ultrasound (FUS) in combination with microbubbles has been shown capable of delivering large molecules to the brain parenchyma through opening of the blood-brain barrier (BBB). However, the mechanism behind the opening remains unknown. To investigate the pressure threshold for inertial cavitation of preformed microbubbles during sonication, passive cavitation detection in conjunction with B-mode imaging was used. A cerebral vessel was simulated by generating a cylindrical hole of 610 μm in diameter inside a polyacrylamide gel and saturating its volume with microbubbles. Definity microbubbles (Mean diameter range: 1.1-3.3 μm, Lantheus Medical Imaging, N. Billerica, MA, USA) were injected prior to sonication (frequency: 1.525 MHz; pulse length: 100 cycles; PRF: 10 Hz; sonication duration: 2 s) through an excised mouse skull. The acoustic emissions due to the cavitation response were passively detected using a cylindrically focused hydrophone, confocal with the FUS transducer and a linear-array transducer with the field of view perpendicular to the FUS beam. The broadband spectral response acquired at the passive cavitation detector (PCD) and the B-mode images identified the occurrence and location of the inertial cavitation, respectively. Findings indicated that the peak-rarefactional pressure threshold was approximately equal to 0.45 MPa, with or without the skull present. Mouse skulls did not affect the threshold of inertial cavitation but resulted in a lower inertial cavitation dose. The broadband response could be captured through the murine skull, so the same PCD set-up can be used in future in vivo applications. (E-mail: ek2191@columbia.edu)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.