Abstract
MoN2 and MoS2 sheets are representatives of two-dimensional transition metal dinitrides and dichalcogenides, respectively. Their similarity in atomic ratios misled people to make an incorrect assumption in previous studies that the former adopts the geometry of the latter. However, compared with S, N is smaller and has fewer valence electrons, and N is more effective in mediating magnetic couplings; therefore, a different geometry and different properties can be expected for the MoN2 sheet. Here using a global structure search, for the first time we have identified the ground state geometry of this sheet named Tetra-MoN2 that is much more stable than the H phase proposed previously. Different from the metallic nature of H-MoN2, Tetra-MoN2 is a semiconductor having an indirect band gap of 1.41 eV with a flexible strain tunability. In particular, Tetra-MoN2 can exhibit rich half-metallic behaviors mediated by the polarized p electron of N and induced by low-concentration hole doping and small strains that are readily achievable experimentally.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.