Abstract
Surface ozone pollution, as a pressing environmental concern, has garnered widespread attention across China. Due to air mass transport, effective control of ozone pollution is highly dependent on collaborative efforts across neighboring regions. However, specific regions with strong internal interactions of ozone pollution are not yet well identified. Here, we introduced the Geospatial SHapley Additive exPlanation (GeoSHAP) approach, which primarily involves machine learning and geostatistical algorithms. Based on extensive atmospheric environmental monitoring data from 2017 to 2021, machine learning models were employed to train and predict ozone concentrations at the target location. The R2 values on the test sets of different scale regions all reached 0.98 in the overall condition, indicating that the core model has good accuracy and generalization ability. The results highlight key regions with high ozone geospatial relationship (OGR) index, predominantly located in the Northern District (ND), spanning the Fen-Wei Plain, the Loess Plateau, and the North China Plain, as well as within portions of the Yangtze River Delta (YRD) and the Pearl River Delta (PRD). Further investigation indicated that high geospatial relationships stem from a synergy between anthropogenic and natural factors, with anthropogenic factors serving as a pivotal element. This study revealed key regions with the most urgent need for joint control of anthropogenic sources to mitigate ozone pollution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.